### Radioactive dating - Australian Museum

Radiometric dating or radioactive dating is a technique used to date materials such as rocks or of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change. Many rocks and organisms contain radioactive isotopes, such as U and C . These radioactive isotopes are unstable, decaying over time. These include radiometric dating of volcanic layers above or below the fossils or by comparisons to similar rocks and fossils of known ages.

While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays exponentially at a rate described by a parameter known as the half-lifeusually given in units of years when discussing dating techniques.

- Absolute Dating
- Radioactive dating
- Dating dinosaurs and other fossils

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product. In many cases, the daughter nuclide itself is radioactive, resulting in a decay chaineventually ending with the formation of a stable nonradioactive daughter nuclide; each step in such a chain is characterized by a distinct half-life.

In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter. Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years e. It is not affected by external factors such as temperaturepressurechemical environment, or presence of a magnetic or electric field.

For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time. This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.

Accuracy of radiometric dating[ edit ] Thermal ionization mass spectrometer used in radiometric dating. The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation.

The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron.

This can reduce the problem of contamination. In uranium—lead datingthe concordia diagram is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3.

The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

This normally involves isotope-ratio mass spectrometry. For instance, carbon has a half-life of 5, years.

After an organism has been dead for 60, years, so little carbon is left that accurate dating cannot be established. On the other hand, the concentration of carbon falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.

Closure temperature If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusionsetting the isotopic "clock" to zero.

## How Do Scientists Determine the Age of Dinosaur Bones?

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system.

These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes.

Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature.

This field is known as thermochronology or thermochronometry. The age is calculated from the slope of the isochron line and the original composition from the intercept of the isochron with the y-axis. The equation is most conveniently expressed in terms of the measured quantity N t rather than the constant initial value No.

### How Is Radioactive Dating Used to Date Fossils? | Sciencing

The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its closure temperature. This is well-established for most isotopic systems. Plotting an isochron is used to solve the age equation graphically and calculate the age of the sample and the original composition. If a layer of rock containing the fossil is higher up in the sequence that another layer, you know that layer must be younger in age.

This can often be complicated by the fact that geological forces can cause faulting and tilting of rocks. Absolute Dating Absolute dating is used to determine a precise age of a rock or fossil through radiometric dating methods. This uses radioactive minerals that occur in rocks and fossils almost like a geological clock.

So, often layers of volcanic rocks above and below the layers containing fossils can be dated to provide a date range for the fossil containing rocks.

The atoms in some chemical elements have different forms, called isotopes. These isotopes break down at a constant rate over time through radioactive decay. By measuring the ratio of the amount of the original parent isotope to the amount of the daughter isotopes that it breaks down into an age can be determined. We define the rate of this radioactive decay in half-lives.

If a radioactive isotope is said to have a half-life of 5, years that means after 5, years exactly half of it will have decayed from the parent isotope into the daughter isotopes. Then after another 5, years half of the remaining parent isotope will have decayed.

To determine the ages of these specimens, scientists need an isotope with a very long half-life. Some of the isotopes used for this purpose are uranium, uranium and potassium, each of which has a half-life of more than a million years. Unfortunately, these elements don't exist in dinosaur fossils themselves. Each of them typically exists in igneous rock, or rock made from cooled magma.

**How Can Radioactive Dating Be Used To Determine The Age Of Rocks?**

Fossils, however, form in sedimentary rock -- sediment quickly covers a dinosaur's body, and the sediment and the bones gradually turn into rock. But this sediment doesn't typically include the necessary isotopes in measurable amounts. Fossils can't form in the igneous rock that usually does contain the isotopes. The extreme temperatures of the magma would just destroy the bones.